Enter a problem...
Linear Algebra Examples
, ,
Step 1
Add to both sides of the equation.
Step 2
Add and .
Step 3
Write the system of equations in matrix form.
Step 4
Step 4.1
Perform the row operation to make the entry at a .
Step 4.1.1
Perform the row operation to make the entry at a .
Step 4.1.2
Simplify .
Step 4.2
Perform the row operation to make the entry at a .
Step 4.2.1
Perform the row operation to make the entry at a .
Step 4.2.2
Simplify .
Step 4.3
Multiply each element of by to make the entry at a .
Step 4.3.1
Multiply each element of by to make the entry at a .
Step 4.3.2
Simplify .
Step 4.4
Perform the row operation to make the entry at a .
Step 4.4.1
Perform the row operation to make the entry at a .
Step 4.4.2
Simplify .
Step 4.5
Multiply each element of by to make the entry at a .
Step 4.5.1
Multiply each element of by to make the entry at a .
Step 4.5.2
Simplify .
Step 4.6
Perform the row operation to make the entry at a .
Step 4.6.1
Perform the row operation to make the entry at a .
Step 4.6.2
Simplify .
Step 4.7
Perform the row operation to make the entry at a .
Step 4.7.1
Perform the row operation to make the entry at a .
Step 4.7.2
Simplify .
Step 4.8
Perform the row operation to make the entry at a .
Step 4.8.1
Perform the row operation to make the entry at a .
Step 4.8.2
Simplify .
Step 5
Use the result matrix to declare the final solutions to the system of equations.
Step 6
The solution is the set of ordered pairs that makes the system true.
Step 7
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.